Rank canonical correlation analysis and its application in visual search reranking

نویسندگان

  • Zhong Ji
  • Peiguang Jing
  • Yuting Su
  • Yanwei Pang
چکیده

Ranking relevance degree information is widely utilized in the ranking models of information retrieval applications, such as text and multimedia retrieval, question answering, and visual search reranking. However, existing feature dimensionality reduction methods neglect this kind of valuable potential supervised information. In this paper, we extend the pairwise constraints from the traditional class labels to ranking relevance degrees, and propose a novel dimensionality reduction method called Rank-CCA. Rank-CCA effectively incorporates ranking relevance constraints into standard canonical correlation analysis (CCA) algorithm, and is able to employ the knowledge of both unlabeled and labeled data. In the application of visual search reranking, our proposed method is verified through extensive experimental studies. Experimental results show that Rank-CCA is superior to standard CCA and semi-supervised CCA (Semi-CCA) algorithm, and achieves comparable performance with several state-of-theart reranking methods while preserving the superiority of low dimensional features. & 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Rank with Graph Consistency

The ranking models of existing image search engines are generally based on associated text while the image visual content is actually neglected. Imperfect search results frequently appear due to the mismatch between the textual features and the actual image content. Visual reranking, in which visual information is applied to refine text based search results, has been proven to be effective. How...

متن کامل

Canonical Analysis of the Relationship between Components of Professional Ethics and Dimensions of ‎Social Responsibility‌ ‌

  Background: Today, professional ethics and social responsibility play an important role in ‎organizations. This study aimed canonical analysis of the relationship between components ‎of professional ethics and social responsibility dimensions among the first high ‎school teachers in the Naghadeh province.‎‏ ‏ Method: This study, in terms of purpose is application, and in terms of data ‎collec...

متن کامل

A Survey On Visual Search Reranking

Due to the explosive growth of online video data and images , visual search is becoming an important area of research. Most existing approaches used text based image retrieval which is not so efficient. To precisely specify the visual documents, Visual search reranking is used. Visual search reranking is the rearrangement of visual documents based on initial search results or some external know...

متن کامل

Generalization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems

In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...

متن کامل

The Effectiveness of Dictionary and Web-Based Answer Reranking

We describe an in-depth study of using a dictionary (WordNet) and web search engines (Altavista, MSN, and Google) to boost the performance of an automated question answering system, Webclopedia, in answering definition questions. The results indicate applying dictionary and web-based answer reranking together increase the performance of Webclopedia on a set of 102 TREC-10 definition questions b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013